Crop ManagementR.W. Heiniger, J.F. Spears, D.T. Bowman, E.J. Dunphy, D.T. Bowman, Crop Science Department Hybrid SelectionHybrid selection is a critical component of any profitable corn production system. Skillful hybrid selection requires that growers:
Understanding Corn HybridsCorn hybrids fall into three categories, single crosses, three-way crosses and double-crosses. Single crosses, derived from the crossing of unrelated inbred lines, are characterized by uniformity of plant height, ear height and yield. This uniformity improves machine harvesting and is most advantageous when growing conditions are favorable. The three-way cross is slightly less uniform than the single cross because it is created by hybridizing a single cross seed parent with an unrelated pollen parent inbred. The double-cross is developed from four unrelated inbreds. Accordingly, it is less uniform in plant height, ear height, silking date, etc. than the single or three-way cross. In stress situations, this lack of uniformity is an advantage and it is the reason why double- crosses yield more consistently than single- crosses in a wide range of environments. Performance of the best single and three-way crosses will generally exceed that of the best double-crosses. Genetically-Engineered HybridsGenetic engineering is a powerful, new hybrid development tool that is complementing traditional plant breeding. Genetic engineering is currently being used to introduce traits that confer insect, herbicide, or disease resistance to existing hybrids. Therefore, the basic yield potential of the hybrid is unchanged. Low yielding varieties before genetic engineering will be low yielding after genetic engineering. Corn growers should not select a hybrid based solely on the fact that it is genetically engineered. Instead, selection of a genetically-engineered hybrid should depend on whether the resistant traits that hybrid has are needed in the corn cropping system. Hybrid CharacteristicsFor most growers selecting corn hybrids, yield is the primary consideration. However, successful corn producers choose hybrids on the basis of agronomic characteristics that complement their specific farm environment. For example, medium maturity, standability, seedling vigor and leaf disease tolerance are critical on farms comprised of organic soils. Early to medium maturity, standability, grain quality and drought tolerance are desirable hybrid characteristics for coastal plain peanut and tobacco growers. Livestock producers value good grain quality, while many piedmont and mountain bottomland silage growers demand gray leaf spot and viral disease tolerance. Most corn seed companies now routinely distribute information that allows growers to carefully scrutinize the relative agronomic attributes of hybrids they sell. Hybrid MaturityCorn producers should plant several hybrids differing in maturity. A 300-acre corn producer, for example, should plant a minimum of three hybrids. Planting hybrids that differ in maturity increases the odds that corn will be combined at optimum grain moisture levels throughout the harvest season and minimizes risk caused by the adverse effects of short-term water deficits and high temperatures. In North Carolina, the highest corn yields are produced by medium-season hybrids with a relative maturity of 110 to 118 days. Corn farmers with highly productive soils with good water-holding capacities should choose hybrids in the 112 to 120 day maturity range, while corn farmers with droughty soils should choose hybrids in the 108 to 115 day maturity range. Maturity Rating Systems. Since it is important that growers know the maturity of hybrids they plant, several systems have been used to describe the "relative maturity" (RM) of corn. The "Minnesota System" is widely used by most seed companies to describe corn RM. Table 2-1 shows the RM of several corn hybrids commonly grown in North Carolina. Unfortunately, the actual days to maturity of corn hybrids will change based on when the hybrid is planted and the seasonal weather. Growing Degree Days. The most precise way to determine if hybrids actually differ in days to tasseling and silking or days to physiological maturity is to examine growing degree day (GDD) data supplied in the sales brochures of seed companies (Table 2-1). Growing degree days are calculated every 24 hours using the formula, GDD = [(Tmax + Tmin) / 2] - 50 where Tmax equals maximum temperature during the day and Tmin is the minimum temperature encountered during the day. Fifty degrees is substituted for the minimum temperature when temperature falls below 50 degrees. Eighty-six degrees is substituted for the maximum if maximum temperatures exceed 86 degrees. Those numbers are substituted in the calculation because corn grows very little below 50 degrees and growth slows markedly above 86 degrees. Tables 2-2 and 2-3 show the number of GDDs commonly recorded in central North Carolina. However, the actual number of GDDs experienced for any given period will vary from year to year due to changes in temperature. If a grower wants to select hybrids that minimize the crop's susceptibility to drought, hybrids should be chosen that, on average, will accumulate enough GDDs to start silking before June 20. Growers should also choose hybrids that vary by at least 100 GDDs in days to mid-silk. Growers can spread harvest by selecting a group of "companion " hybrids with a range of 300 to 400 GDDs to physiological maturity. Corn Hybrids for Silage.
High quality corn silage consists of a grain component that
supplies 80% of the energy and 90% of the protein on a per-pound
basis, and a stover component that supplies fiber and important
amino acids such a carotene. The ideal corn hybrid for silage
combines maximum grain production with a highly digestible,
high-tonnage stover. A good hybrid for corn silage has the
following characteristics: medium to tall stature, excellent
grain yield, superior brittle stalk resistance, and excellent
standability. Growers who use corn for silage should select
hybrids with medium to late maturity. These hybrids tend to grow
longer and have more tonnage. While tropical hybrids which have
the capability for prolific growth may appear to be ideally
suited for silage, keep in mind that much of the forage quality
(energy and protein) come from the grain component. Most seed
companies select materials that combine good grain yield
with maximum tonnage. The North Carolina Official Variety
Testing program measures silage yield performance and these results are available
from your county Cooperative Extension office.
The Hybrid Selection Process.
Corn growers are confronted with the difficult task of selecting
three to four hybrids from approximately 100 varieties offered by
more than 20 companies. Significant effort is required to
sort through the confusing array of numbers and yield. To
simplify hybrid selection, the process may be divided into eight
steps that generate intelligent hybrid selections and increased
corn profits.
Table 2-2. Average monthly temperatures and daily GDD for Raleigh, NC.
Table 2-3. Average Accumulative, Weekly and Daily Growing Degree Days for Raleigh, NC. (Long-Term Averages).
High Oil Corn ProductionHigh oil corn is a special type of corn that has higher percent oil content than regular #2 yellow corn. Typically #2 yellow corn has from 3.5 to 4.0% oil. Ideally, high oil corn should contain 7.0 to 8.0% oil. In samples tested in 1996-1998, the oil content of high oil corn hybrids ranged from 4.6 to 8.1% compared to normal dent corn that had oil contents ranging from 2.7 to 4.0%. In addition to the higher oil content, high oil corn kernels usually have a slightly higher percent protein and, even more importantly, higher amounts of amino acids such as lysine, threonine, and tryptophan that are important in the diets of poultry and swine. The primary advantage of high oil corn is to the livestock producer, particularly poultry, dairy, and swine producers. For livestock producers who are not using added fat, high oil corn increases daily weight gains by as much as 10%. As a result, feeders do not have to pay for expensive fat or amino acid additives. They save money and maintain or increase the productivity of their operation. For corn farmers the benefits comes from having satisfied customers who are willing to share some of the increased profits with them in the form of premiums paid for high oil corn. Currently, livestock feeders are paying form $0.15 to $0.30 more for high oil corn. The disadvantages of high oil corn come from the potential for lower corn yields, increased kernel damage, and the potential for increases in insect damage. Because almost 10% of the seed in the bag is the unproductive male pollinator, yield decreases of up to 10% are possible. Furthermore, in a year when drought stress occurs during pollination, the smaller amount of pollen available and the mismatch in the timing of silk emergence and pollen shed could reduce yields even more. Companies producing high oil hybrids recommend increasing seeding rates to obtain higher plant populations that make up for the loss of productive plants. This may not be feasible on droughty soils. The Dupont pollinators are designed to compensate for drought conditions by shedding pollen over a longer period (2 weeks vs 7-10 days), and by producing more pollen. Table 2-4 shows the yield and oil content of a number of high oil hyrids and compares them with three conventional hybrids. The increase in embryo vs the hard endosperm results in a softer kernel that is more prone to damage. Trials have shown a significant increase in kernel damage in the midwest. Softer kernels and high oil also makes this corn attractive to insect feeding. Currently, there are no high oil Bt hybrids, but this is being considered. If corn yields from a high oil hybrid and a conventional hybrid remained the same there would be no need for premiums. The increase in demand for high oil corn and the increased income available to purchase high oil corn would result in market price increases for these hybrids. Therefore, the open market system would provide the incentive for growers to select high oil hybrids. Unfortunately, the reduced yield potential from high oil hybrids make premiums necessary. For instance, consider the following scenario: a producer plants a high oil corn hybrid and a conventional hybrid side by side. At harvest, the conventional hybrid yields 100 bu per acre verses the high oil hybrid that yields only 90 bu per acre (10% yield reduction due to the unproductive male pollinator). At the current market price of $2.50 per bushel the conventional field returns $250 per acre. The high oil corn returns $225 per acre. In order to make up for the decrease in income from the high oil hybrid the producer would have to be paid a premium of $0.28 per bushel. The reduction in yield potential that exists in the current high oil corns are the reason premiums are necessary in the marketplace. A corn producer who is interested in the high oil corn market must determine the potential yield reductions before agreeing to a premium contract. Otherwise, he/she will not be able to calculate the return from high oil corn. Table 2-4. Oil Content, test weight, and yield of
three * These are conventional corn hybrids not high
oil topcross hybrids. Despite the potential for yield reductions, the future for high oil corn in North Carolina is very bright. Because livestock feeders make up a large portion of our corn market, there will be an increasing demand for value added corn products. Livestock feeders don't want to have two separate facilities, one for high oil corn and one for #2 yellow corn. Therefore, because high oil corn has such important feeding benefits, they will be moving to make high oil corn the only product they buy. North Carolina corn producers are in a unique position because our corn is usually harvested in August at a time when corn stocks are low. Livestock feeders interested in maintaining their supply of high oil corn should be willing to pay better premiums for this early crop in order to make sure that they do not have to convert back to feeding normal #2 yellow dent corn. This is only the beginning of the trend toward value added products. High lysine corn, low phytic acid corn (results in better phosphorus utilization by livestock), low linolenic oil soybeans and other value added crops will be coming in the near future. Growers will be moving toward contract marketing with livestock producers to provide these new value added crops. Corn SeedRecent improvements in planter technology have produced
planting units that use vacuum or air pressure to hold the seed
to a plate or drum until it reaches the release point. Usually,
these types of planting units can use different seed sizes and
shapes depending on the size of the hole in the plate or drum.
However, experience has shown that round kernels tend to work
best because they flow better in the units and fit the plate or
drum better. Finger pickup units can also plant a wide range of
kernel shapes and sizes. Again, farmer experience has shown that
small to medium kernels with a round shape work best. The key to
accurate planting is to fit kernel shape and size to the planter
plate, drum, or finger pickup unit that you are using. Corn
producers should carefully select kernel size and shape based on
their equipment.
It may be argued that large kernels possess greater
carbohydrate reserves that enable them to germinate more
consistently and uniformly than small kernels in cold, wet or
compacted soils. In contrast, smaller seed sizes require less
moisture for germination; they may emerge more reliably in dry
planting seasons. However, research has not found any
relationship between kernel size or shape and emergence or yield.
This observation suggests that growers with placeless or vacuum
planters should take advantage of lower prices asked for less
popular seed sizes and shapes. It also suggests that, in years of
limited seed availability, growers should purchase corn hybrids
on the basis of their agronomic performance, not their kernel
size.
To determine the number of live plants expected from a
given seeding rate, growers should use the following equation:
Expected emergence = Seeding Rate
X (%Pure Seed/100) X (%Germination/100)
Under field conditions it is not uncommon to find that as many as 15% of the seeds planted do not produce a live plant. Planting Dates for Corn in N.C.Maximum corn yields are obtained from a plant that grows for the longest period of time in the absence of heat or moisture stress. This means that the selection of planting date at a given location is based upon the desire to obtain the longest growing period while at the same time avoiding periods of drought or high temperatures. While this sounds simple in principle, it is difficult to accomplish in practice. Across North Carolina the period of least rainfall and maximum evapotranspiration occurs from July 10 to August 1 (Figure 2-1). This period also experiences some of the highest temperatures particularly night temperatures. In addition to these factors, effective rooting depths in most soils in North Carolina are restricted to the upper 8 to 24 inches of the soil profile by acidic subsoils, compacted layers, and other root restrictions. The combination of low rainfall, high temperature, high water demand, and shallow rooting depths almost guarantees that the corn crop will experience moisture or temperature stress during the summer months. In any given year, it is impossible to accurately predict when moisture or temperature stress will occur. Long-term data suggests that dry periods with high temperatures occur most often during the period from June 20 to July 15. Therefore, the best strategy that a corn grower can follow in selecting a planting date is one that seeks to avoid pollination during this risky period. Depending on the maturity of the hybrid, field data indicate that corn should be planted either early in the growing season or late enough so that only the early growth occurs during July. Unfortunately, planting corn later in the growing season increases insect and disease pressure and late harvest misses the opportunity of higher corn prices that occur early in the fall. This means that the early planted corn has the best chance of producing high yields and higher profits. With this in mind, recommended planting dates are based on getting corn planted as soon as possible in the spring. Corn should be planted when soil temperatures reach 55oF at a 2 inch depth and the weather forecast shows a good chance of warm temperatures over the next few days. Figure 2-2 shows the dates when soil temperatures generally reach 55oF. In the tidewater region on organic soils this usually occurs before March 20. In the coastal plain 55 oF soil temperatures occur from March 20 to March 25, in the piedmont from March 25 to April 5, and in the mountains from April 5 to April 20. Since soil temperatures are effected by the amount of soil residue and moisture, planting dates for no-till systems will be later than those used for conventional tillage. When using no-till practices, planting dates can be delayed by 3-5 days. Fig 2-1. 30-year averages for rainfall and potential evaporation at Smithfield, NC.> Planting date studies conducted at NCSU have demonstrated that corn yields decrease with late planting. In the coastal plain and piedmont areas, corn yields decrease, on average, one bushel per acre for every day that planting is postponed after April 15. In the tidewater and mountain regions of the state, corn yields start decreasing after May 1. The later dates in the mountains and tidewater regions are due to the capacity of the soils to hold greater amount of water that extends the period during which corn growth occurs without stress. The accepted cutoff date for corn planting in North Carolina is May 10. After this date, it is generally more profitable to plant another crop. The risk of low corn yields increases because pollination will most likely occur during a period of moisture stress. One way to reduce the risks associated with planting corn late is to switch from full-season hybrids to medium- or early-season hybrids. Best results are found when growers are advised to switch from full-season to medium-season hybrids around April 28, and from medium-season to early-season hybrids around May 7. Fig 2-2. Average date when soil temperature at 2 inches exceeds 55 degrees F for most of the day."> There are some cases where growers should consider planting later in the growing season. Such as when tropical corn hybrids are grown for silage. Tropical hybrids experience rapid growth early during their growth cycle and have more prolific root systems than conventional corn hybrids. Therefore, to avoid lodging tropical hybrids must be planted late. The recommended planting dates for tropical hybrids are from June 1 to June 20. Another situation that is showing some promise in the mid-Atlantic region is the use of early maturing hybrids as a double crop following wheat. By using a Bt hybrid, the grower can avoid insect damage and by planting late the corn will be in the vegetative stage during July. Research in Virginia has found that corn yields range from 80 to 140 bushels per acre in this system. We recommend that growers use double cropped corn only on their better land. Selecting Plant PopulationPlant Population and Soil Moisture Holding CapacityPlant population is a critical factor in corn production,
especially when corn is grown on sandy soils in dry seasons.
Plant populations should be selected according to the soil
moisture-holding capacities of individual fields. Corn plant
populations per acre should increase with increasing soil
moisture holding capacity (Tables 2-5 and 2-6). On soils with
good to excellent soil moisture holding capacity, growers should
seek to obtain a maximum of 27,000 plants/acre. Seldom is there a
need to seed dryland corn at final stands exceeding 28,000
plants/acre. On soils with average water holding capacity, they
should plant to obtain a final stand between 22,000 and 24,000
plants/acre, and on soils with poor water holding capacity final
stands should not exceed 19,000 plants/acre.
A grower should also select a plant population that
complements his package of production practices. Seeding rates
should be matched to tillage systems, capability of the hybrid to
tolerate increasing plant populations, the standability of
specific hybrids and intended use of the crop (for example,
silage versus grain). Corn growers should be aware of the
recommended plant populations for the hybrids they grow (See
section on hybrid selection on page 11).
Numerous irrigated corn studies have shown that 29,000
plants/acre is the optimum plant population for corn when soil
moisture is not limiting. When supplemental moisture is available
to corn via irrigation, seeding rates should increase
proportionally to the quantities of water that can be supplied.
In extremely hot, dry years, most growers using hose reel
machines can not deliver the quantities of water needed by corn.
Growers with sub-irrigation capabilities should use the same
seeding rates as those used by growers irrigating with hose reel
machines. In contrast, center pivot irrigators who water
aggressively can plant to obtain a the ideal plant population of
29,000 plants/acre. Under center pivot irrigation, plant
population should not change with soil type. However, it should
be obvious that center pivot operators tending corn on sandy
soils will have to irrigate more often.
Many growers producing corn on drought-prone soils strive
for final stands of 16,000 to 19,000 plants/acre. Reduction of
plant population to that level is worrisome if adverse seedbed
conditions or insect problems are encountered. When corn stands
fall below 14,000 plants/acre, satisfactory weed control is
seldom attainable. However, the probability of drought is far
greater than the probability of insect or seedbed problems.
Growers using low plant populations as a hedge against drought
should regularly scrutinize hybrid information to ensure that the
hybrid they choose will still produce adequate yields at low
plant densities when rainfall is ample. Those same hybrids should
be among the highest yielding when soil moisture is lacking and
yield levels are low.
Prolific hybrids are corn lines that bear more than one
ear per plant. At normal seeding rates, the second ear on a
prolific hybrid may not contribute significantly to final yield.
At low plant populations, the contribution of a second ear to
grain yield can be significant. Prolific corn hybrids use
nitrogen efficiently and tolerate stress better than single-eared
hybrids. However, it is important to recognize that, to date,
commercial hybrids producing more than one ear per plant in low
population scenarios have not out-performed single-eared hybrids
that responded to low seeding rates by "flexing" their ear size
to produce more grain.
Silage producers generally should increase corn seeding
rates by 2,000 to 4,000 plants/acre. The elevated plant
population increases tonnage and total digestable nitrogen
production without undue risk of lodging because silage harvest
occurs as soon as plants are physiologically mature. Experienced
no-till farmers with up-to-date planting equipment should not
increase corn seeding rates. Before planting techniques were
perfected, it was customary for no-till growers to compensate for
inexperience and poorly performing planters by dropping up to 15%
more kernels. Improvements in no-till equipment and increased
residue management experience enables today's no-till corn
producers to use standard seeding rate recommendations.
Table 2-5. Planting population guidelines for
different soil types with dryland and irrigated corn.
* Based on 30-inch row spacing and 90% germination
H Planter speed is critical in obtaining optimal seeding
rates in conventional and no-till corn production systems. Most
planter types function best at 4 1/2 miles per hour; successful
no-till growers plant slower. Excessive planter speed will
manifest itself in erratic stands, poor weed control and low
yields. Corn growers must recognize that planter performance has
the greatest influence on their ability to produce uniform stands
of the desired density. The potential yield for a given field is
highest when corn plants are evenly distributed. Row widths and
seeding rates that combine to distribute plants uniformly across
a field ensure that individual plants have maximum access to
available light, nutrients and soil moisture. The ability of
growers to select the proper plant population and to achieve that
plant density with precision spacing and uniform emergence within
rows determines, to a great degree, the profitability of corn
enterprises.
Table 2-6. Recommended final plant populations
for corn.
Selecting Row Spacing for Corn Cropping SystemsThe choice of row spacing is one of the most fundamental
components of a corn cropping system. Narrow rows permit more
uniform plant distribution and reduce the inter-plant competition
for moisture, nutrients, and light. However, as row width
decreases, the difficulty in managing weeds, insects, and
fertility increases and there is an increase in machinery costs.
In choosing row width, the corn grower must balance the potential
increase in yield that comes from narrower rows against the
additional machinery cost and management that a narrow row system
demands.
Fig. 2-3. Corn yields at three different row widths in 1996 Camden County." Tidewater Area:Studies conducted in the tidewater area of North Carolina have consistently shown that corn yields increase as row spacings decrease (Fig. 2-3). Corn yields increase by 8.5% as row width is decreased from 36 to 30 inches, and 6.0% as row width is decreased from 30 to 20 inches.Coastal Plain:In the coastal plain area corn yields were shown to increase by 11.5% as row width is decreased from 36 to 30 inches, and 3.5% as row width is decreased from 30 to 20 inches.Piedmont Area:Corn yields increase by 5.0% as row width is decreased from 36 to 30 inches, and 4.8% as row width is decreased from 30 to 20 inches in the piedmont.Economics of Narrow Row CornThe potential yield increase from changing from wide to
narrow rows must be weighed against the cost of that change, both
in terms of equipment modification and an increase in the annual
input costs. Table 2-7 shows a comparison between potential yield
increases and the returns to a narrow row corn system. Costs of
converting equipment to narrow rows are considered (figured at
$20,000) as well as the interest cost and the increase in
fertilizer. Additional insecticide costs are not figured in this
chart. Given an 8.5% yield increase between 36 and 30 inch rows,
corn growers with over 250 acres of corn with a yield history of
125 bu/acre or higher can justify moving from 36 to 30 inch rows.
Growers considering moving from 30 to 20 inch rows must grow over
350 acres of corn to justify the expense. Note that the
difference in overall profit between wide and narrow rows is
small. Even a grower with 500 acres of corn at a 6% yield
increase will only make an additional $2,000 by converting to
narrow rows.
It is clear that although there is a yield advantage to narrow rows in North Carolina, the profit margins are slim. However, if a grower can reduce the cost of the equipment conversion and maximize yield increases, he/she can increase long-term profit. To do this requires a consideration of the components needed to implement a profitable narrow row cropping system. Crop Sequence.No data has been developed showing narrow row corn response to different cropping sequences. However, crop rotations that improve soil fertility and productivity of the system should have an advantage. Corn-soybean or corn-wheat-soybean sequences both should have positive benefits in narrow row systems.Crop Management.It appears that hybrid selection, planting dates, or plant populations do not impact the yield increases found in narrow row systems. Therefore, the grower should not change current practices. Increasing plant populations is not required or recommended to obtain the desired yield increases from narrow row systems. Soil Management.Anything that increases available soil moisture should improve the consistency of yield responses in narrow row systems. Therefore, no-till practices are recommended for narrow row corn. A key observation about narrow row spacings is that as row spacings decrease the amount of starter fertilizer or in-furrow insecticide within the immediate area of the seedling decreases. The root system of a small corn seedling only exploresTable 2-7. Economic return from changing to narrow rows at a range of yield increases.
Costs Assumed: Convert corn head $5000
a limited area; therefore, there is less concentration of fertilizer or insecticide in the root zone. Studies have shown that per-acre rates of starter fertilizer need to be increased as row spacings narrow. Starter fertilizer rates should increase 1 to 1.5 pounds per acre for every inch that row spacing is decreased. Sidedress nitrogen should be applied earlier (14-21 days after emergence) to avoid problems with crop damage from the application operation. Weed and Pest Management.Because higher per acre insecticide rates may be needed in narrow row corn systems and this may not be covered by current labeling, we recommend that growers use row spacings of 30 inches or greater where there are heavy infestations of billbugs, wireworms, or corn rootworms. Rotations that reduce these pests will be critical to maintain the productivity of a narrow row corn system. Herbicides should be selected that are highly effective against the weeds present with the idea that followup applications may not be possible. The residual activity of the herbicide will be less of a consideration in narrow row systems. Again, timing is critical. The application needs to be made in the 14-21 days following emergence before the crop canopy closes.Equipment Management.Because of the low profit margins for converting to narrow rows, equipment conversions should be made to meet the needs of the grower, not with the goal of switching to narrow rows. If soybean planter can be used or if the grower is buying a new planter, then a consideration can be given to changing to narrow rows. Changing wheel spacings should be done to accommodate all crops that the producer raises. Corn row widths should be selected to match with the row spacing of the other crops. For instance, if the grower is raising cotton on 36 inch rows, then 18 or 24 inch corn rows will work. If planting soybeans on 15 inch rows, then 15 in corn rows should be selected. The goal is to make the conversion without incurring excess costs and with the idea to accommodate all crops so that wheel spacings can remain the same.ConclusionsNarrow row corn systems show promise for increasing corn yields conservatively from 4 to 6%. For growers who raise over 350 acres of corn this would result in a small profit. A complete corn management system as outlined above should be used to maximize yield increases and minimize costs. Seedbed Preparation and Planting ConsiderationsSeedbed PreparationImprovements in planter design have reduced the emphasis on seedbed preparation for corn, but the basic fact still remains that uniform and consistent stands are the result of seed placed in an optimal environment for germination and emergence. The optimal environment for a corn seed has three requirements: adequate moisture, firm seed to soil contact, and temperatures above 55oF. The moisture content of the soil at the depth that the seed is placed should be from 2 to : of field capacity. This means that the soil should be moist enough to show visible signs of moisture, but not so wet that it can be molded into a ball without easily crumbling. In dry conditions, planting depths should be increased to insure adequate moisture at the seeding depth. For germination to occur rapidly and uniformly across the field the seed must be surrounded by soil. The planter should be adjusted so that the seed is placed at the proper depth with good soil contact and cover. This is the key to success in no-till systems. No-till planters frequently use fluted coulters to cut a trench or slot into which the double-disk seed openers place the seed. If these coulters cut too deep or if the flute design allows too much soil to be disturbed they leave a deep ragged slot which allows the seed to fall deeper than intended. Good seed-soil contact is almost impossible in these situations. On the other hand, no-till planters working in heavy trash tend to ride up on the trash mat resulting in seed placement that is uneven and inconsistent. Planting into a conventionally tilled seedbed which is cloddy from being worked too wet or, in the case of heavy organic soils, which is too fluffy, will also result in poor seed-soil contact. Farmers using conventional tillage should avoid multiple tillage passes which lead to puddling and compaction of the soil surface. Modern planters have the capability to work in rough seedbeds and do not require excess tillage to be successful in placing the seed correctly. Soil TemperatureSeed germination and seedling emergence are affected by many environmental conditions, particularly soil moisture and temperature. Wet soils or soils with heavy amounts of residue will be cooler than soils that have ideal moisture or no cover. On all but the heavy organic soils of eastern North Carolina, Atrash whippers@ attached to a no-till planter have been shown to be effective in promoting better germination and emergence by reducing surface cover over the seed and by stirring the top 2@ of soil. For best results, corn growers should avoid planting into cold, wet soils if at all possible. Corn should be planted when soil temperatures reach 55oF at a 2 inch depth and the weather forecast is favorable. In tidewater, piedmont, coastal, and mountain areas of North Carolina, 55 degree soil temperatures are usually reached just prior to March 20, March 25 to April 5, March 20 to March 25, and April 5 to April 20, respectively. Planting DepthDepth of planting will influence several factors associated with stand establishment and should vary with planting date. In general, the deeper the planting depth, the cooler the soil and the slower the emergence. Temperature in the first 2 inches will be greatly influenced by air temperature and can fluctuate as much as 10 to 15OF during a single day. Soil temperatures are fairly consistent at the 2 to 4 inch depth, and warm gradually as the season progresses. Normal planting depths range from 1 1/4 to 2 inches. Since cold temperatures can reduce germination, planting depth should be 1/2 to 1 inch shallower at very early planting dates. Another impact of planting depth is associated with the process of germination and seedling growth. One of the first structures to emerge from the seed during the germination process is the coleoptile (co-lee-op-tile), a sheath like structure that protects the young shoot (see Figure 2-4). Without the coleoptile, the tender shoot or plumule, would be shredded before it could penetrate the soil surface. Planting corn seeds too deep can result in the coleoptile growth terminating well below the soil surface. As the shoot grows through the coleoptile tip, it will continue to grow unprotected towards the surface. In heavy soils, crusted or compacted soils, an unprotected shoot will be torn apart before it can emerge. Research has shown that planting too shallow or too deep can adversely affect corn yield. Planting depths greater than 2 inches result in seedlings with less vigor, slower growth and development, and less yield. Conversely, planting depths less than 0.5 inch lead to poor seminal root development, shallow rooting depth, and poor drought tolerance. Special care should be taken not to plant corn too shallow on landscapes prone wind erosion. Strong winds can uncover seed and destroy stands. It is, therefore, important to regularly check the seeding depth during the planting operation. Harvest and StoragePreharvest LossesAn efficient corn harvest is the result of attention to management throughout production and harvest seasons. Decisions, such as the selection of hybrids that mature at different times (see the section on hybrid selection), can help improve harvest conditions and insure that the corn produced makes to the bin. Other details, such as combine preparation and repair, require careful planning, but payoff in less down time and better combine performance. Estimates have put average corn harvest losses in North Carolina anywhere from 5 to 10 bushels per acre, with expert operators and managers reducing this to about 1 to 2 bushels per acre. The added income from an efficient harvest is almost pure profit, so a timely harvest and the few minutes spent on careful combine adjustment can be extremely profitable. Harvesting early is the key to successful corn production. Those who harvest early can: 1. Receive premiums for new-crop corn paid by livestock producers. 2. Avoid adverse consequences of crop damage from a hurricane. 3. Avoid field losses resulting from ear drop and fungal pathogens. Delayed harvest leads to reductions in corn yields due to ear drop, stalk lodging and, to a lesser extent, from reductions in kernel weight. Fungal diseases that infect the corn kernel also become more and more of a problem as harvest is delayed. Mycotoxins, such as aflatoxin and fumonisin, which are produced by these fungal pathogens increase as harvest is delayed often resulting in corn that is unsuitable for human or livestock use. Ideally, corn harvest should begin as soon as the grain reaches moisture levels of 25% or less. Under favorable conditions following black layer formation, corn should be ready to harvest in 10 days or less. Harvest LossesBesides reducing pre-harvest losses, early harvest also results in less combine loss. There are several points where grain can be lost during combining. These losses can be divided into three categories: 1. Ear losses are ears that are left on the stalks or dropped from the header after being snapped. 2. Loose kernel losses are kernels that are left on the ground either by shelling at the snapping rolls or by being discharged from the rear of the combine. 3. Cylinder losses are kernels left on the cob due to incomplete shelling. Proper combine operation involves measuring harvest losses and then making adjustments in settings or harvest speed to correct them. Use the following procedures to measure harvest losses. Determine ear loss. Pull the combine into the field and
harvest at the usual rate for about 300 feet. Pace off an area
behind the machine that contains 1/100 of an acre (Table 2-8).
Gather all unharvested ears from the area. Each 3 pound ear represents a loss of one
bushel per acre. If the ear loss is above one bushel per acre,
you should
Table 2-8. Row Length in feet per 1/100
acre
check an adjacent area in the unharvested corn to determine if the ear loss occurred before the combine pulled into the field. If you determine that ear loss is occurring at the combine header, carefully examine the following: the speed of the gathering chains and rollers, ground speed, stripper plate settings, and worn or missing ear guards. Often combine ear loss is the result of excessive roller speeds which cause the ear to bounce out of the header. Experienced combine operators match header and combine speeds to prevent header losses. Next determine loose kernel losses. Back the combine up a short distance and examine the area between the standing corn and the spot where the rear of the combine was by counting the number of corn kernels in a square foot area. Do this at two or three spots and average your results. For every three kernels found in a square foot area, the combine is losing a bushel of corn per acre. Repeat this procedure in the area where the chaff from the combine has been discharged. Compare your results to determine where the loose kernel losses are occurring. Examine header speed, chaffer settings, air settings, and combine speed as possible causes of loose kernel losses. Finally, determine cylinder losses. Examine corn cobs that have been discharged from the rear of the combine. The presence of kernels still attached to the cob is a sure sign of cylinder loss. This type of loss can be especially serious since a single cob can contain enough kernels to cause yield losses of up to 3 bushels per acre. Examine concave settings, cylinder speed, and ground speed to eliminate cylinder losses. When properly adjusted and used, grain loss monitors can be
beneficial in reducing harvest losses. Crop conditions can change
drastically over the course of a few hours and grain loss
monitors can assist the combine operator in making minor
adjustments throughout the harvest season.
Drying Costs.One of the reasons often cited for not harvesting in a timely manner is the cost of drying corn to the proper moisture levels for storage. If the crop is to be stored for any given period and if fungal growth is to be stopped or reduced, corn moisture content should not exceed 15.5%. Because early harvest is done when grain moisture often exceeds 17%, drying is necessary. Grain drying costs can be estimated by the following equations:Energy cost ($/dry bushel) = [(LP gas price X 0.02) + (Electricity price X 0.01)] X (initial moisture B 15.5)Energy cost ($/wet bushel) = Energy cost per dry bushel X (100 B initial moisture)/84.5These calculations are based on the fact that it takes
0.02 gal of LP gas and 0.01 KWH of electricity to remove 1%
moisture per bushel.
Figure 2-5 shows per-bushel drying costs
when LP gas costs $0.60 per gallon and electricity $0.06 per KWH.
Keep in mind these costs do not cover the cost of the drying
equipment or the extra labor involved in operating a dryer but
the extra costs of grain shrinkage (weight loss caused by
removing moisture and handling) are shown. When one considers
that drying corn at 25% moisture costs approximately $0.12 per
day, it is clear that saving two to three bushels per acre by
harvesting early can easily pay for drying costs. It should also
be noted that there is a financial penalty for over-drying. If
the crop is to be sold immediately, avoid drying corn below the
base market level of 15.5%. However, if the corn is to be stored
through the summer, extra drying to 13.5% is needed to prevent
moisture accumulation in warm temperatures. The additional cost
of drying corn to 13.5% should be considered as a cost associated
with long-term storage.
In-bin drying systems consist of a perforated floor in the bottom of the bin that covers a chamber approximately 16 inches high. A large fan and propane heater is attached to the bin so that heated air is blown into this chamber at the bottom of the bin. The advantage of this system is that the bin can serve both to dry and store the grain. The disadvantage to this system is that as the depth of corn over the perforated floor increases, the resistance to air movement increases. This reduces the volume of grain that can be effectively dried. Corn grain depth for grain drying using an in-bin system should not exceed 4 feet without sacrificing drying efficiency. This means that the bin must be filled and emptied multiple times during the harvest season. Several companies now have in-bin drying systems that automatically remove the grain from the bin following drying and allow for automated refill from a wet holding tank. Batch or continuous flow dryers are the most common type of grain drying equipment used for drying corn. These units have high airflow rates, monitored heat output, and limited grain depth across the drying chamber. Most units on the market are completely automated so that little operator oversight is necessary. Refill occurs from a wet holding tank on signal from the dryer. Dry grain is automatically discharged into an auger or elevator for movement into a grain bin. The advantages to these systems is that they are very efficient in drying grain to the desired moisture and they require little additional labor to operate the drying system. The disadvantage is that these systems usually cost more than in-bin systems and require grain handling systems to get the grain to and from the dryer. In deciding which grain drying system is right for your operation, it is important that you determine the drying capacity in bushels per hour of each system and compare that to the speed at which you will be harvesting corn from the field. The volume of corn that can be dried per hour in in-bin systems is limited by the size of the drying bin and the speed at which it can be filled and emptied. This restriction often limits the amount of corn that can be harvested per day. Because they must be completely filled and emptied during the drying cycle, batch flow dryers are also restricted as to the volume of corn that can be dried per hour. Continuous flow systems offer the highest drying capacities of any system on the market. While the capacity of the grain handling system and wet holding tank can help increase the volume of grain handled by the drying system, there is a limited period over which wet grain should be stored before drying. Careful attention should be given to matching drying capacity with harvest speed. Few corn growers in North Carolina want to stop harvest due to limited drying capacity at a time when a major hurricane is threatening. Grain Storage.There is one primary reason to store grain B to increase net return. If the net return cannot be increased by storing grain, storage is a waste of time and effort, and becomes a risk. The major drawback to grain storage can be summed up by the following. The returns from storage are measured in pennies, the losses from losing just one bin to insects or mold are measured in dollars. Fixed and variable costs associated with storing corn are shown in Table 2-9. While on-farm storage may appear to cost less when compared to commercial storage, there are other factors that must be considered. If grain is to be stored for a long period of time, if frequent monitoring of the grain is not possible, or if the labor and time required to move grain to the marketplace is not available when needed, then commercial storage may be a better alternative. The following questions should be used to determine if on-farm storage is necessary:
Handling Stored Grain.Stored-grain management is a long-term
approach to maintaining post-harvest grain quality, minimizing
chemical control inputs, and preserving the integrity of the
grain storage system. To implement an effective management
program,
Table 2-9. Annual on-farm per bushel storage cost
for corn
operators must understand the ecology of the storage system. Storage management must focus on the following factors.
An excellent preventive post-harvest grain management approach is the SLAM system (Sanitize/seal, Load, Aerate, Monitor). These stored grain management strategies should include the following steps. Sanitize/Seal
Load
Aerate
Table 2-10. Estimated storage times in days for shelled corn.
Source: Oklahoma State University, Stored Product Management, Circular Number E-912, January 1995. Monitor
Corn SilageHarvesting Corn Silage. Silage producers are more concerned about the tradeoff between silage quality and tonnage than they are about harvest losses. As in most cereal crops, the percent protein in the crop increases until the embryo is formed after which it declines. On the other hand, the energy content of the silage and total digestable nutrients are lowest during the period in which the embryo of the kernel is formed and then increases rapidly until black layer. Therefore, silage should be harvested according to quality requirements of the livestock feeder. For dairy producers who need higher protein, corn silage should be harvested just prior to early dent stage. This is the time when grain protein reaches its maximum content. For cattle feeders, corn silage should be harvested from early to mid dent stage. This helps improve protein levels with more energy and total tons of silage. In all cases, corn silage should be finely and uniformly chopped (particle length from : to 1 inch). Careful attention should be given to the sharpness of the knives and shear bar and to the setting of the shear bar. The uniformity and quality of the cut is directly related to silage quality and nutrient content. Storing Corn Silage. There are a number of different storage systems suitable for corn silage. The four most common systems are open trench or pit, concrete stave silo, sealed silo, and silage bags. Open trenches or pits are most commonly used because of their low cost, the ease of unloading, and the fact that corn silage can be harvested at 65 to 75 percent moisture. Corn silage in an open trench or pit should be tightly packed during the filling process to remove as much air space as possible. Once the pit is filled, the silage should be uniformly leveled and then covered with black plastic or other suitable cover. Many corn silage producers use a preservative such as salt or a commercial product on the top layer of corn silage to help in the fermentation process. Ground corn also works well as a fermentation stabilizer. Concrete stave silos also are commonly used to store corn silage. These type of silos are filled from the top and equipped with an automatic unloading system. To properly store corn silage in a concrete stave silo the moisture content should be between 60 to 65 percent. Too much moisture will result in seeping. On the other hand, too little moisture results in poor fermentation and increased spoilage of the silage. Concrete stave silos are less expensive than sealed silos, but cost more to build and maintain than a pit silo or the use of silage bags. Sealed silos are similar to concrete stave silos with the exception that they restrict the entry of oxygen into the silo. This results in a quick stabilization of the fermentation process and less spoilage. Silage moisture levels must be between 45 to 55 percent. The major drawback to sealed silos is the high cost of building and maintaining the silo. Silage bags are polyurethane plastic bags approximately 12-15 feet in diameter. Silage is pressed into these bags by a special machine that moves forward automatically as the bag is filled. The process results in high quality forage because the fermentation process is controlled by the airtight bags and silage can be harvested at higher moisture levels (65 to 75 percent) without fear of seepage. The main drawbacks to silage bags are the cost of the bag and bagging equipment, the tendency for the bags to tear or rip, and the difficulty in removing the silage from the bag. The cost of silage bags, including the bagger, is less than either a concrete stave or sealed silo, but greater than a pit silo. The method of storage for corn silage should be selected based
on the value of quality forage, the labor available, and cost.
Whichever storage system is selected, the key to proper silage
storage is the moisture level of the silage at the time it is
harvested. Use of a silage moisture tester is vital in
determining when to cut corn silage for each storage system. Even
1 or 2 percent more or less moisture than recommended for the
system could result in severe losses due to seepage or spoilage.
This page created by: Alan D. Meijer, Agricultural Research Technician II on 02/28/00 and last revised on 7/24/00 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||